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SEPARATION SCIENCE AND TECHNOLOGY, 17(1), pp. 271-287, 1982 

Supercritical Fluid (Dense Gas) 
Chromatography/Extraction with Linear Density 
Programming 

LYLE M. BOWMAN, JR.*, MARCUS N. MYERS, and J .  CALVIN GIDDINGS 
DEPARTMENT OF CHEMISTRY 
UNIVERSITY OF UTAH 
SALT LAKE CITY, UTAH 841 12, UNITED STATES 

ABSTRACT 

The v e r s a t i l i t y  of dense g a s e s  o r  s u p e r c r i t i c a l  f l u i d s  as so l -  
v e n t s  i s  b r i e f l y  reviewed.  I t  is p o i n t e d  o u t  t h a t  g a s  d e n s i t y  i s  
t h e  key pa rame te r  c o n t r o l l i n g  s o l v e n t  power and i t  is a rgued  t h a t  
d e n s i t y  programming shou ld  r e p l a c e  p r e s s u r e  p r o g r a m i n g  f o r  chro- 
ma tograph ic  and e x t r a c t i v e  s e p a r a t i o n s .  Our p r e v i o u s  t h e o r y  o f  
dense  g a s  s o l u b i l i t y  and s o l u b i l i t y  t h r e s h o l d s  i s  t h e n  used  t o  ex- 
p l a i n  why r e l a t i v e l y  h igh  p r e s s u r e s  a r e  d e s i r a b l e  f o r  dense  g a s  
s e p a r a t i o n s .  The t h e o r y  i s  a l s o  used  t o  examine peak s p a c i n g  f o r  
l i n e a r  d e n s i t y  programs t o  deve lop  a s p e c i a l  d e n s i t y  program f o r  
un i fo rm peak s p a c i n g .  

An e x p e r i m e n t a l  l i n e a r  d e n s i t y  programming sys t em u t i l i z i n g C 0 2  
a t  4OoC and  a t  p r e s s u r e s  up t o  300 a t m o s p h e r e s i s  d e s c r i b e d  and  f a c -  
t o r s  a f f e c t i n g  s e p a r a t i o n  e f f i c i e n c y  a r e  e v a l u a t e d .  
of f o u r  a r o m a t i c  compounds i s  demons t r a t ed  u s i n g  p r o g r a m e d  d e n s i t y  
e x t r a c t i o n  a lone .  Chromatographic  columns used  w i t h  p o l y s t y r e n e  
o l igomers  and p o l y n u c l e a r  a r o m a t i c  compounds are shown t o  improve 
t h e  s e p a r a t i o n .  The s p a c i n g  o f  o l igomers  i s  shown t o  b e  i n  qua l -  
i t a t ive  a c c o r d  w i t h  t h e o r y .  F i n a l l y ,  f a c t o r s  t o  b e  c o n s i d e r e d  in 
optimum programming are d i s c u s s e d .  

A s e p a r a t i o n  

INTRODUCTION 

Gases ,  when compressed, a c q u i r e  some o f  t h e  s o l v e n t  c h a r a c t e r -  

i s t i c s  of l i q u i d s  (1).  S o l v e n t  power, a s  measured b y t h e H i l d e b r a n d  

9, P r e s e n t  a d d r e s s :  Syn tex  Ophthalmics ,  2328 West Royal Palm, 
S u i t e  1,  Phoenix,  Arizona 85021. 

271 

Copyright 0 1'181 hy Maisel 1)ehhcr. IIIC. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
3
:
4
5
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



272 BOWMAN, MYERS, AND GIDDINGS 

s o l u b i l i t y  pa rame te r  6 ,  i n c r e a s e s  i n  rough p r o p o r t i o n  t o  d e n s i t y  i-1 

and approaches  l i q u i d  s o l v e n t  power when g a s e s  are compressed t o  

l i q u i d  d e n s i t i e s ,  (1-5). Consequen t ly ,  t h e  g r a d u a l  compression of a 

s u i t a b l e  gas  i n  t h e  p r e s e n c e  of a group of n o n v o l a t i l e  s o l u t e s  w i l l ,  

by v i r t u e  of  i n c r e a s i n g  s o l v e n t  power,  f o r c e  f i r s t  one of t h e  s o l u t e s ,  

t hen  a n o t h e r ,  i n t o  t h e  dense  g a s  s o l u t i o n .  Programmed g a s  compres- 

s i o n ,  t hc i r e fo re ,  can  b e  u t i l i z e d  f o r  chemica l  s e p a r a t i o n s .  T h i s  

wa’i f i r s t  demons t r a t ed  i n  t h i s  l a b o r a t o r y  by  a s t e p w i s e  e x t r a c t i o n  

p r o c e s s  in which CO g a s ,  a t  s u c c e e d i n g  s t a g e s  of p r e s s u r e ,  caused  

f i r s t  t h e  s o l u b j l i t y  of s q u a l a n e  a t  100 a t m ,  t h e n  d i n o n y l  p h t h a l a t e  

a t  400 a t m ,  and f i n a l l y  SE-30 a t  a p r e s s u r e  of 1200 atm (1).  

2 

Dense g a s e s  c o n s t i t u t e  v e r s a t i l e  s o l v e n t s  f o r  b o t h  e x t r a c t i o n  

and chromatography.  T h e i r  a d v a n t a g e ,  re la t ive  t o  l i q u i d s ,  i s  t h a t  

they g e n e r a l l y  p o s s e s s  a more r a p i d  d i f f u s i o n a l  t r a n s p o r t  and a 

lower v i s c o s i t y  ( f e a t u r e s  which f a c i l i t a t e  t h e  chromatographic  pro- 

c e s s )  and t h e i r  s o l v e n t  power is  c o n t r o l l a b l e  o v e r  a wide r ange  by 

changes i n  a s i m p l e  mechan ica l  p a r a m e t e r , p r e s s u r e .  Both a s s e t s  can  

h e  used t o  a d v a n t a g e  i n  programmed compress ion  d e n s e  g a s  e x t r a c t i o n  

and chroriatography . 
Programming i s  most e f f e c t i v e  when a c o n t i n u o u s  i n c r e a s e  i n  

p r e s s u r e  i s  used s u c h  t h a t  a wide  r a n g e  of i n c r e a s i n g l y  r e c a l c i t r a n t  

s p e c i e s  ,ire f o r c e d  one by one i n t o  t h e  mob i l e  phase ,  T h i s  technique 

w a 5  f i r s t  employed by J e n t o f t  and Gouw ( 6 , 7 ) ,  and l a te r  by Bartmann 

and S c h n e i d e r  ( 8 , 9 )  and Nieman and Rogers  (10 ) .  These a u t h o r s  used 

Linear  p r e s s u r e  programs i n  which p r e s s u r e  r o s e  i n  p r o p o r t i o n  t o  

el,rsped 1 ime. 

Our s t u d i e s  have  shown t h a t  g a s  d e n s i t y ,  n o t  p r e s s u r e ,  i s  t h e  

€undament.al pa rame te r  c o n t r o l l i n g  s o l u b i l i t y  (1-3). The s o l u b i l i t y  

pa rame te r  5 ,  as w e  have  men t ioned ,  i s  a p p r o x i m a t e l y  p r o p o r t i o n a l  

t o  densi t -y  p ,  b u t  it v a r i e s  s t r o n g l y  and i n  a compl i ca t ed  manner 

w i t h  p r e s s u r e  p The ra te  of  change of 6 w i t h  r e s p e c t  t o  p ,  d6 /dp ,  

i s  ve ry  ‘Large a t  low p r e s s u r e s  and becomes v e r y  s m a l l  a t  h i g h e r  

p r e s s u r e s .  T h i s  i s  i l l u s t r a t e d  i n  F i g u r e  1 which shows t h e  
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FIGURE 1. Dens i ty  (and s o l u b i l i t y  parameter  6 )  v e r s u s  p r e s s u r e  
f o r  carbon d i o x i d e  a t  40°C. 

v a r i a t i o n  of p ( p r o p o r t i o n a l  t o  6) with p r e s s u r e  f o r  C02 a t  a t e m -  

p e r a t u r e  ( 4 0  C> on ly  s l i g h t l y  h i g h e r  t h a n  t h e  c r i t i c a l  t empera tu re  

of C 0 2  ( 3 1 O C ) .  

over  a wide d e n s i t y  o r  p r e s s u r e  r ange  w i l l  be  less r e g u l a r  and less 

p r e d i c t a b l e  w i t h  l i n e a r  p r e s s u r e  programming t h a n  w i t h  l i n e a r d e n s i t y  

programming. 

(10).  
s p a c i n g  w i l l  b e  d i s c u s s e d  i n  t h e  t h e o r e t i c a l  s e c t i o n .  

P 

I t  i e  t h u s  eqpec ted  t h a t  peak s p a c i n g  and r e s o l u t i o n  

Th i s  m a t t e r  has  been d i s c u s s e d  by Nieman and Rogers 

The d e t a i l e d  e f f e c t  o f  l i n e a r  d e n s i t y  programs on peak 

I n  t h i s  paper  w e  have u t i l i z e d  CO g a s  a t  p r e s s u r e s  up t o  330 2 
atmospheres  f o r  t h e  l i n e a r  d e n s i t y  programming. While t h i s  maximum 

is c o n s i d e r a b l y  below t h e  2000 a t m  w e  have used i n  nonprogrammed 

work, i t  is  c o n s i d e r a b l y  above the c r i t i c a l  p r e s s u r e  of C 0 2  (75 .3  

atm).  Our work s u g g e s t s  t h a t  a r ange  of p r e s s u r e s  and d e n s i t i e s  a t  

least t h i s  h i g h  is necessa ry  f o r  t h e  versat i le  h a n d l i n g  of s t r o n g l y  

i n t e r a c t i n g  s o l u t e s  of a n  i n t e r m e d i a t e  molecu la r  we igh t  (200-1000) 

and f o r  polymers of h i g h  molecu la r  we igh t .  

t i o n  of F i g u r e  1 shows t h a t  abou t  h a l f  of t h e  l i q u i d  d e n s i t y  i s  

ach ieved  a t  100 a t m ,  w e  n o t e  t h a t  innumerable  s p e c i e s  r e q u i r e  den- 

While a c u r s o r y  inspec-  
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274  BOWMAN, MYERS, AND G I D D I N G S  

s i t i e s  ve ry  c l o s e  t o  l i q u i d  d e n s i t i e s  t o  become s o l u b l e  i n  the dense  

gas. Such d e n s i t i e s  r e q u i r e  p r e s s u r e s  much h i g h e r  t h a n  100 , a t m ,  as  

F i g u r e  1 c l e a r l y  i l l u s t r a t e s .  The t h e o r e t i c a l  b a s i s  of t h e  ineed f o r  

such h igh  d e n s i t i e s  w i l l  b e  p r e s e n t e d  i n  t h e  t h e o r y  s e c t i o n .  

A l l  of t h e  r e s u l t s  r e p o r t e d  h e r e  were o b t a i n e d  w i t h  CO 

I!ie 40°C t e m p e r a t u r e  co r re sponds  t o  a reduced t e m p e r a t u r e  T 

p e r a t u r e / c r i t i c a l  t e m p e r a t u r e )  of 1.03. The v a l u e  I = 1.03 i s ,  i n  

olir e x p e r i e n c e ,  a u s e f u l  compromise. Lower v a l u e s  l e a d  t o  l a r g e  

and sometimes e r r a t i c  changes w i t h  minor t e m p e r a t u r e  f l u c t u a t i o n s  

arid h i g h e r  v a l u e s  r e q u i r e  h i g h e r  p r e s s u r e s  t o  r e a c h  t h e  d e s i r e d  gas 

d e n s i t i e s .  

a t40°C.  

(tem- 
2 

Carbon d i o x i d e  w a s  chosen because  i t  has  a c o n v e n i e n t  c r i t i c a l  

t empera tu re  (3 loC) ,  a h igh  l i q u i d  d e n s i t y  s o l u b i l i t y  pa rame te r  o f  

15 = 11.0, no W a b s o r p t i o n ,  and a w e a l t h  of d a t a  a p p l y i n g  t o  i t  

from our  p r e v i o u s  s t u d i e s .  
l i q  

THEORY 

Our p rev ious  s t u d i e s  have shown t h a t  t h e  s o l u b i l i t i e s  i n  dense  

g a s e s  o f  s o l u t e s  of i n t e r m e d i a t e  and h i g h  molecu la r  weight  i n c r e a s e  

a b r u p t l y  w i t h  i n c r e a s i n g  p r e s s u r e  and d e n s i t y .  Consequent ly ,  t h e r e  

i s  a r a t h e r  d i s t i n c t  l e v e l  of compression a t  which t h e  s o l u b i l i t y  

t i r s t  becomes o b s e r v a b l e .  T h i s  l e v e l  is d e s i g n a t e d  by t h e  threshold 

p r e s s u r e  p* o r  t h e  t h r e s h o l d  d e n s i t y  p*.  More fundamen ta l ly ,  t h e r e  

i s  a un ique  t h r e s h o l d  l e v e l  S *  of t h e  s o l u b i l i t y  pa rame te r  6 f o r  

each s o l u t e ,  and p" and p"  s imp ly  r e p r e s e n t  t h e  compression l e v e l s  

n e c e s s a r y  t o  r e a c h  A * .  

Giddings,  Myers, and King have  d e r i v e d  an e q u a t i o n  f o r  5*!60, 

the t h r e s h o l d  s o l u b i l i t y  pa rame te r  r e l a t i v e  t o  t h e  s o l u t e  s o l u b i l i t y  

pa rame te r  ( 2 ) .  The p r o p o r t i o n a l i t y  between s o l u b i l i t y  parameter  

and d e n s i t y  makes i t  p o s s i b l e  t o  e q u a t e  t h e  r a t i o  63e/60 t o  p " / p 6 0 ,  

t h e  t h r e s h o l d  d e n s i t y  r e l a t i v e  t o  t h e  d e n s i t y  of t h e  g a s  a t  t h e  

p o i n t  where i t s  s o l u b i l i t y  pa rame te r  e q u a l s  t h a t  of t h e  s o l u t e .  
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LINEAR DENSITY PROGRAMMING 275 

With t h i s  s u b s t i t u t i o n  and o t h e r  minor  changes,  t h e i r  Equa t ion  7 

becomes 

where R is t h e  g a s  c o n s t a n t ,  T t h e  a b s o l u t e  t e m p e r a t u r e ,  M* t h e  

t h r e s h o l d  molecu la r  we igh t  of s o l u t e  ( t h a t  mo lecu la r  we igh t  b a r e l y  

s o l u b l e  a t  a d e t e c t a b l e  l e v e l  a t  d e n s i t y  p" ) ,  p t h e  s o l u t e d e n s i t y  

and K* t h e  t h r e s h o l d  v a l u e  of t h e  d i s t r i b u t i o n  c o e f f i c i e n t  between 

phases .  In t h e  c i t e d  pape r  t h e  v a l u e  K* % 8 x 10 w a s  s u g g e s t e d  on 

t h e  b a s i s  of e x p e r i m e n t a l  ev idence .  We round o f f  I n  (K") t o  16.  

I n s e r t e d  i n  t h e  e q u a t i o n ,  t h i s  v a l u e  y i e l d s  

6 

So lv ing  f o r  M", we o b t a i n  

Equa t ion  3 approx ima tes  t h e  uppe r  molecu la r  we igh t  v a l u e  t h a t  

can  b e  d e t e c t e d  a t  d e n s i t y  p*. 

v e r y  r a p i d l y  as  d e n s i t y  p;? drops  below p Thus a doub l ing  of 

(pfi0- P*) from 0.1 to 0.2 g/mL, which r e p r e s e n t s  a change i n  p" of  

on ly  0.1 g/mL, c u t s  t h e  workable  molecu la r  we igh t  r ange  M* by a 

f a c t o r  o f  4 .  

modera t e ly  p o l a r  o r  o t h e r w i s e  s t r o n g l y  i n t e r a c t i n g  s o l u t e s ,  v e r y  

h i g h  p r e s s u r e s  may be needed t o  r e a c h  t h e  p *  c o r r e s p o n d i n g  t o  t h e  

m o l e c u l a r  we igh t  r a n g e  d e s i r e d .  

The e q u a t i o n  shows t h a t  M" f a l l s o f f  

60 '  

I f  p o  and t h u s  p 6 0  a r e  f a i r l y  h i g h ,  c o r r e s p o n d i n g  t o  

Equa t ion  2 can  a l s o  b e  used  t o  i n v e s t i g a t e  t h e  s p a c i n g  between 

peaks (as i n  a homologous s e r i e s )  as d e n s i t y  i n c r e a s e s  i n  a l i n e a r  

f a s h i o n  w i t h  t i m e .  Thus,  w e  o b t a i n  from Equa t ion  2 t h e  f o l l o w i n g  

d e r i v a t i v e  
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276 BOWMAN, MYERS, AND G I D D I N G S  

which 5hOWS t h a t  t h e  inc remen t  i n  d e n s i t y  (and t ime)  between suc- 

c e s s i v e  peaks w i t h  a f i x e d  inc remen t  i n  m o l e c u l a r  we igh t  g r a d u a l l y  

dt .creases as u M " ~ / ' .  

5 rnc.c  the d e n s i t y  o r  t i m e  i nc remen t  must become z e r o  a s  p *  ap- 

p roaches  06", t h e  d e n s i t y  a t  which,  t h e o r e t i c a l l y ,  s o l u t e s  of  i n -  

f r n i t e  Lecular  we igh t  become s o l u b l e .  

T h i s  r e s u l t  is i n  a c c o r d  w i t h  e x p e c t a t i o n s  

Wliile peak s p a c i n g  w i t h  l i n e a r  d e n s i t y  programs a re  n o t  ex- 

pec ted  to b e  un i fo rm,  i t  w i l l  h e  more r e g u l a r  t h a n  w i t h  l i n e a r  

p r e s s u r t  programs where peak s p a c i n g  depends on 7 t h rough  a com- 

p l i c a t e d  e q u a t i o n - o f - s t a t e  e f f e c t .  However, w e  n o t e  t h a t  i n  t h e  

( onc ave  down p o r t i o n  of F i g u r e  1 t h e  d e c r e a s i n g  d e n s i t y  inc remen t s  

pc'r u n i t  t i m e  i n  a l i n e a r  p r e s s u r e  program p a r t i a l l y  compensate  f o r  

t h e  d e c r e a s i n g  peak s p a c i n g  expec ted  i n  a l i n e a r  d e n s i t y  program. 

rliiis, tile l i n e a r  p r e s s u r e  program may n o t  b e  as bad as  e x p e c t e d  

based o i l  t h e  h i g h l y  v a r i a b l e  s l o p e  of  F i g u r e  1. However, t h e o r e t -  

i c a l  a t i i l v s i s  oE t h e  problem is  compl i ca t ed  by t h e  n e c e s s i t y  of 

u s i n g  a r e a l i s t i c  e q u a t i o n  of s t a t e  and w i l l  not  b e  a t t e m p t e d  h e r e .  

We sliould p o i n t  o u t  t h a t  i f  w e  want t o  a c h i e v e  un i fo rm peak 

s p a c i n g  w e  must have  

which w i l l  s e r v e  t o  s p e c i f y  t h e  n e c e s s a r y  dp* /d t  v a l u e s  and ,  by 

i n t e g r a t i o n ,  t h e  k ind  of d e n s i t y  program o * ( t )  n e c e s s a r y  f o r  uniform 

peak s p a c i n g .  I f  w e  u s e  Equa t ion  4 t o  o b t a i n  dM"/dp* ( s u b s t i t u t i n g  

f o r  ,"I" g iven  by Equat ion 3 i n  Equa t ion  4), w e  f i n d  t h e  n e c e s s a r y  

program t o  b e  of t h e  form 
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LINEAR DENSITY PROGRAMMING 277 

where c i s  a c o n s t a n t  of i n t e g r a t i o n .  I f  w e  wish t o  s t a r t  t h e  

program such t h a t  p *  = 0 a t  t i m e  t = 0 ,  c becomes l / p A 0  . 2 

The above t h e o r e t i c a l  c o n c l u s i o n s  rest on t h e  v a l i d i t y  o f  

Equa t ion  1 ,  a d p i t t e d l y  a n  approx ima t ion .  Reasonable  agreement  be- 

tween Equa t ion  1 and e x p e r i m e n t a l  t h r e s h o l d  d a t a  has  been  demon- 

s t r a t e d  ( 2 ) .  

r e s u l t s  from o u r  l a b o r a t o r y ,  however, i t  is c l e a r  t h a t  t h e  e q u a t i o n  

i s  v a l i d  on ly  f o r  l i q u i d s  o r  f o r  s o l i d s  w i t h  a m e l t i n g  p o i n t  n o t  

s u b s t a n t i a l l y  h i g h e r  t h a n  t h e  o p e r a t i n g  t empera tu re .  To r e a c h  t h i s  

c o n d i t i o n  f o r  h i g h  m e l t i n g  p o i n t  s o l i d s ,  i n c r e a s e d  e x p e r i m e n t a l  

t e m p e r a t u r e s  and c a r r i e r  g a s e s  w i t h  c o r r e s p o n d i n g l y  l a r g e  c r i t i c a l  

t e m p e r a t u r e s  shou ld  be chosen.  F a i l u r e  t o  do t h i s  l e a d s  t o  a con- 

s i d e r a b l y  dep res sed - -o f t en  u n o b s e r v a b l e - - s o l u b i l i t y .  

I n  t h e  l i g h t  o f  more r e c e n t  and s t i l l  unpub l i shed  

EXPERIMENTAL 

Apparatus  

A diagram of t h e  l i n e a r  d e n s i t y  programming a p p a r a t u s  is shown 

i n  F i g u r e  2 .  The p r e s s u r e  s o u r c e  c o n s i s t e d  o f  a n  Aminco #46-14021 

( S i l v e r  S p r i n g s ,  Md.) a i r  o p e r a t e d  2 - s t age  2000 atm gas  compressor  

and a 1 l i t e r  p r e s s u r e  r e a c t i o n  v e s s e l  (Aminco #46-16875) used as a 

b a l l a s t  t a n k .  The p r e s s u r e  of t h e  s o u r c e  w a s  c o n t r o l l e d  by a s o l i d  

s t a t e  r e l a y  c i r c u i t  coupled t o  a n  Aminco #14164 3000 atm p r e s s u r e  

gauge. System plumbing i n c l u d e d  0 .101  cm and  0 .05  c m  I . D .  and 0.317 

cm O.D. 316 s t a i n l e s s  s teel  t u b i n g  connected by t y p e  HF2 f i t t i n g s  

and v a l v e s  from High P r e s s u r e  Equipment Co. ( E r i e ,  P e n n s y l v a n i a ) .  

The compressor ,  b a l l a s t  t ank ,  and c o n n e c t i n g  t u b i n g  were s h i e l d e d  by 

a 0.635 cm t h i c k  s teel  p l a t e  box h e a t e d  t o  40 2 1 C .  G a s  h e l d  a t  

420 a t m  i n  t h e  b a l l a s t  t a n k  w a s  f e d  t o  a Conso l ida t ed  C o n t r o l s  

( B e t h e l ,  Conn.) S e r i e s  # l B  h i g h  p r e s s u r e  r e g u l a t o r .  L i n e a r  g a s  

d e n s i t y  programming was accomplished by d r i v i n g  t h e  p r e s s u r e  r eg -  

u l a t o r  w i t h  a n  e l e c t r o n i c a l l y  c o n t r o l l e d  v a r i a b l e  speed motor  (G.K. 

Heller, F l o r a l  Pa rk ,  N . Y . ,  T2-100). The r o t a t i o n  ra te  w a s  regulated 
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Pressure reduction valve 
and flow controller 

I- 
RECORDER 

I* IGURE 2 .  Schematic  diagram of t h e  l i n e a r  d e n s i t y  programming 
dense  g a s  chromatograph.  

liy a i . i m  c u t  to g i v e  t h e  n e c e s s a r y  p r e s s u r e  change t o  y i e l d  a l i n e a r  

i n c r e a s e  i n  d e n s i t y .  ( A  d e t a i l e d  d e s c r i p t i o n  of  t h i s  d e v i c e  is  

S iven  i n  R e f e r e n c e  1 2 ) .  The o u t l e t  f low from t h i s  r egu la to i -  w a s  

I i l t e r e d  th rough  a me te r - long  charcoal column b e f o r e  e n t e r i n g  t h e  

chromdtograph oven .  A Heise (Newtown, Conn.) CM-3012 p r e s s u r e  

zauge was used t o  m o n i t o r  p r e s s u r e .  

llie oven was a 30 c m  s q u a r e  g a l v a n i z e d  s t e e l  box i n s u l a t e d  

Tilth 2 . 5 4  cm of  f i b e r  g l a s s .  Tempera tu re  w a s  m a i n t a i n e d  t o  40 _+_ 

0.5o/c. Dense gas w a s  f e d  t o  the sample c e l l ,  t h e n  th rough  t h e  

rhromacographic  column t o  t h e  d e t e c t o r ,  and f i n a l l y  reduced t o  

a tmosphe r i c  p r e s s u r e  by a p r e s s u r e  r e d u c t i o n  valve. 

d e p o s i t e d  from s o l u t i o n  o n t o  g l a s s  wool i n s i d e  a 1.58 mm O . D . ,  1 .01 

run 1.1). t u b e  which w a s  i n s e r t e d  i n t o  a h i g h  p r e s s u r e  tee f i t t i n g  

{ ) l a c e d  i n  t h e  sys t em such  t h a t  d e n s e  g a s  c o u l d  b e  f o r c e d  th rough  

t h e  t u b e  and s u b s e q u e n t l y  l e d  t o  t h e  column ( 1 2 ) .  

The sample was 

? h e  h i g h  p r e s s u r e  UV d e t e c t o r  sys t em is d e s c r i b e d  e l s e w h e r e  

(12). Gas from t h e  d e t e c t o r  c e l l  w a s  reduced t o  a tmosphe r i c  p re s -  
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LINEAR DENSITY PROGRAMMING 279 

s u r e  by a p r e s s u r e  r e d u c t i o n  v a l v e  ( 1 2 ) .  The o u t l e t  f low w a s  con- 

t r o l l e d  by a n  e l e c t r o n i c  t h e r m i s t o r  f eedback  c i r c u i t  c o n t r o l l i n g  

t h e  p r e s s u r e  r e d u c t i o n  v a l v e .  Output  of t h e  d e t e c t o r  was r eco rded  

on a Var i an  ( P a l o  A l t o ,  C a l i f . )  C-200 s t r i p  c h a r t  r e c o r d e r .  

M a t e r i a l s  

The g a s  used i n  t h i s  s t u d y  w a s  U.S. Welding C.P. g r a d e  ca rbon  

d i o x i d e .  

bonded t o  P o r a s i l C ,  37-75 micron,  Waters  A s s o c i a t e s ,  M i l f o r d ,  MA) 

and Chromasorbs P and 14 (bo th  from Johns-Manvil le ,  Denver, Co). 

A l l  columns were c o n s t r u c t e d  u s i n g  0.635 cm O . D .  and 0.203 cm I . D .  

316 s t a i n l e s s  s tee l  t u b i n g  packed by s t a n d a r d  d r y  column t echn iques .  

Benzene, ch lo ro fo rm,  t o l u e n e ,  pen tadecy lpheno l ,  e i c o s a n o i c  a c i d ,  

n a p h t h a l e n e ,  1,3,5-triphenylbenzene,anthracene, 9, lO-diphenylan-  

t h r a c e n e ,  2 ,3-benzanthracene,  hexaphenylbenzene and pen tacene  

were o b t a i n e d  from A l d r i c h  Chemical Company (Milwaukee, Wiscons in ) .  

The 600, 900, and 2100 molecu la r  we igh t  p o l y s t y r e n e s  were o b t a i n e d  

from P r e s s u r e  Chemical Company ( P i t t s b u r g h ,  Pennsy lvan ia ) ;  phenan- 

t h r e n e  w a s  o b t a i n e d  from Matheson, Coleman and B e l l  (Norwood, Ohio); 

d i e t h y l s t i l b e s t r o l  d i p a l m i t a t e  w a s  o b t a i n e d  from A l f r e d  Bader 

Chemical Company (Milwaukee, Wiscons in ) ;  p h e n y l s t e a r a t e  was obtained 

from Eastman Organ ic  Chemicals (Roches t e r ,  New York);  and Anti-  

o x i d a n t  #330 w a s  o b t a i n e d  from E t h y l  C o r p o r a t i o n  (Orangeburg, South 

C a r o l i n a ) .  

Column packing m a t e r i a l s  were GC-Durapak (Carbowax 400 

Procedure  

The sample m a t e r i a l  was d i s s o l v e d  i n  t o l u e n e  o r  benzene t o  a 

c o n c e n t r a t i o n  of 20 mg/mL. Approximately 40 t o  50 U L  of  t h e  s o l u -  

t i o n  w a s  p l a c e d  on t h e  s u b s t r a t e  i n  t h e  sample tube  and t h e  t u b e  

i n s e r t e d  i n t o  t h e  chromatographic  system. The sys t em w a s  p re s -  

s u r i z e d  t o  2 7 2  atm and t h e  f low r a t e  a t  t h e  p r e s s u r e  r e d u c t i o n v a l v e  

w a s  se t  a t  60 ml/min. 

When t h e  i n j e c t i o n  system had come t o  e q u i l i b r i u m  % 15min a f t e r  

p r e s s u r i z a t i o n ,  t h e  l i n e a r  d e n s i t y  program w a s  s t a r t e d .  The p res -  
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280 BOWMAN, MYERS, AND GIDDINCS 

+tire' w, is  a l lowed  t o  i n c r e a s e  from 2 7 . 2  t o  approx ima te ly  300 a t m  i n  

‘ U I  11 c i  wny t l i , i t  t h e  d e n s i t y  r o s e  a t  a r a t e  of 0.005 o r  0 .01 p/mL-mLn, 

irim 0 . 0 4 7  g/ntI, t o  0 .9  g/mi . 

RESULI’S AND DISCUSSION 
___I_ ~ -I_-. 

111 3 l i nea r  d e n s i t y  programmed chromatograph two mechanisms 

u f  s e p a r a t i o n  are p r e s e n t :  a c o n t i n u o u s  ” s o l v e n t  e x t r a c t i o n . ”  i n  the 

sample c e l l  and d i f f e r e n t i a l  r e t e n t i o n  i n  t h e  ch romatograph ic  c o l -  

umn. In  o r d e r  t o  maximize e f f i c i e n c y ,  t h e  ra te  of d e n s i t y  change 

must b e  optimi.zed w i t h  r e s p e c t  t o  t h e  e x t r a c t i o n  p r o c e s s  i n  t h e  

i n j e c t i ~ o n  c e l l . ,  f l ow ra te ,  and column l e n g t h .  I f  t h e  d e n s i t y  i s  

i n c r e a s e d  t o o  r a p i d l y ,  t h e  p r o c e s s  w i l l  n o t  t a k e  p r o p e r  adva.ntage 

o f  d e n s i t y  p r o g r a m i n g  as components w i l l  b e  e x t r a c t e d  and m i g r a t e d  

too  cl.ose t o g e t h e r .  S i m i l a r l . ~ ,  i f  column l e n g t h  i s  t o o  g r e a t  o r  

f l o w  t.oo sl.ow, d i f f e r e n t i a l  m i g r a t i o n  between components w i l l  be  

1iiniini:;hed by l a t e  e l u t i o n  and p r e s s u r e s  exceed ing  optimum l e v e l s .  

Once t h e  t h r e s h o l d  d e n s i t y  of  a component i s  r e a c h e d ,  it i s  

advan tageous  i.f t h a t  component is  e x t r a c t e d  q u i c k l y  and comple t e ly  

s o  that.  i t  can b e  t o t a l l y  removed from subsequen t  components.  To 

t h a t  e n d ,  g l a s s  woo l ,  Chromosorb P ,  and Chromosorb W were tested t o  

de te rmine  which material  w a s  most s u i t a b l e  f o r  u s e  a s  a s o l i d  sup-  

p o r t  oil which t o  d e p o s i t  t h e  sample s o l u t i o n s .  Each of thes:e  

m a t e r i a l s  was p l a c e d  i n  t h e  sample c e l l ,  v a r i a b l e  q u a n t i t i e s  of an 

, int l i racene-chloroform s o l u t i o n  p l a c e d  on them, and t h e  c e l l  i n s e r t e d  

i n t o  t h e  sys t em.  The sample w a s  r u n  w i t h o u t  a chromatograph ic  

c o l u m n  t r i  d e t e r m i n e  t h e  e f f e c t i v e n e s s  of e x t r a c t i o n .  A heavy 

l o a d i n g  produced a b road  peak h i g h l y  skewed toward the f r o n t  edge 

wi th  an  ab rup t  t a i l .  Optimum l o a d i n g  w a s  50 pL o r  l ess  o f  t h e  

s ; ampl ix  s c l l u t i o n  which presumably formed a t h i n  c o a t i n g  l e a d i n g  t o  

r a p i d  c x t r n c t j o n .  T h i s  s t u d y  a l so  showed t h a t  g l a s s  wool and Chrom- 

o s o r b  W a l lowed  h i g h e r  levels of  sample l o a d i n g  t h a n  Chromosorb P 

b e f o r e  e x c e s s  skewing o c c u r r e d .  Glass wool w a s  f i n a l l y  chosen f o r  

:ise because it w a s  e a s i l y  hand led  i n  t h e  sample c e l l .  
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LINEAR DENSITY PROGRAMMING 281 

The t h i c k n e s s  of t h e  d e p o s i t e d  sample is ,  of  c o u r s e ,  e s p e c i a l l y  

c r i t i c a l  when c o n s i d e r i n g  s o l u t e  m i x t u r e s  i n s t e a d  of s i n g l e  compo- 

n e n t s .  When t h e  t h r e s h o l d  d e n s i t y  i s  r eached  f o r  a component, t h a t  

compound w i l l  b e g i n  t o  d i s s o l v e  l e a v i n g  i n s o l u b l e  components beh ind  

in t h e  s u r f a c e  l a y e r  of t h e  d e p o s i t .  The s o l u b l e  molecules  i n  t h e  

i n n e r  l a y e r s  must d i f f u s e  o u t ,  a s low p r o c e s s  which can b roaden  t h e  

zone. As an  extreme c a s e  of t h i s ,  w e  found t h a t  a m i x t u r e  of hexa- 

phenylbenzene ( an  i n s o l u b l e  component) and a n t h r a c e n e  i n  t o l u e n e  

f a i l e d  t o  y i e l d  any o b s e r v a b l e  peak even though a n t h r a c e n e  is  v e r y  

s o l u b l e  i n  ca rbon  d i o x i d e .  The absence  of a peak p e r s i s t e d  w i t h  

r e p e a t e d  i n j e c t i o n s  r e g a r d l e s s  of g a s  d e n s i t y  o r  sample concen t r a -  

t i o n .  I n  o t h e r  c a s e s  where two s o l u b l e  s p e c i e s  are p r e s e n t  which 

d i s s o l v e  a t  d i f f e r e n t  d e n s i t i e s ,  t h e  two may e l u t e  t o g e t h e r  i f  t h e  

c o a t i n g  is t o o  t h i c k .  I n  a l l  c a s e s  t h e  sample l o a d i n g  shou ld  b e  

minimal t o  r educe  zone b roaden ing  and component o v e r l a p .  

The t h r e s h o l d  p r e s s u r e  and d e n s i t y  o f  a number of  components 

were determined by runn ing  t h e  i n d i v i d u a l  compounds l i s t e d  i n  Tab le  

1 w i t h o u t  a chromatographic  column. The t h r e s h o l d  d e n s i t y  w a s  c a l -  

c u l a t e d  from t h e  p o i n t  on t h e  chromatogram where t h e  component was 

f i r s t  d e t e c t e d .  

S e v e r a l  m i x t u r e s  o f  t h e  compounds shown i n  Tab le  1 were run  t o  

de t e rmine  t h e  minimal d e n s i t y  d i f f e r e n c e  n e c e s s a r y  f o r  s e p a r a t i o n  

w i t h o u t  a column. Two programmed d e n s i t y  r a t e s  were t e s t e d ;  t h e  

p e r t i n e n t  d a t a  a r e  l i s t e d  i n  Tab le  2 .  Comparison of r e s u l t s  f o r  

t h e  two program r a t e s  i n d i c a t e s  t h a t  t h e  s lower  rate y i e l d s  s l i g h t -  

l y  b e t t e r  r e s o l u t i o n  than  t h e  f a s t e r  rate. S p e c i f i c a l l y ,  t o  o b t a i n  

u n i t  r e s o l u t i o n  by e x t r a c t i o n  a lone ,  a t h r e s h o l d  d e n s i t y  d i f f e r e n c e  

A D *  of  0.15 g/mL is needed a t  a program r a t e  o f  0 .01 g/mL-min w h i l e  

a 0.01 g/mL d i f f e r e n c e  is r e q u i r e d  f o r  t h e  0.005 g/mL-min program. 

F i g u r e  3 i l l u s t r a t e s  t h e  A p ”  r equ i r emen t  by showing t h e  s e p a r a t i o n  

of f o u r  components each hav ing  a Ap’? of a t  l e a s t  0 .1  g/mL wi th  

r e s p e c t  t o  i t s  n e i g h b o r s .  We emphasize t h a t  t h i s  s e p a r a t i o n  is ob- 

t a i n e d  by e x t r a c t i o n  a l o n e ,  w i t h o u t  t h e  b e n e f i t  of a chromatographic 

column. It  is v e r y  l i k e l y  t h a t  f u r t h e r  s t u d i e s  o f  i n j e c t i o n  c e l l  

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
3
:
4
5
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1
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TABLE 1 

Thresho ld  I l e n s i t i e s  and P r e s s u r e s  f o r  Var ious  Compounds i n  
GO2 a t  40°C 

Compound Molecu la r  Thresho ld  Thresho ld  
Weight D e n s i t y  P r e s s u r e  

g / c c  atrn 

Benzene 

Phcnyl S teara te  

Pen tadecy lpheno l  

E icosano ic  Acid 

Naphthalene 

Phenanth r ene  

1 ,3 ,5 -Tr ipheny lbenzene  

Anthracene 

A n t i o x i d a n t  11330 

9.10-Diphenylanthracene 

2 , 3  - Benzanthracene 

Pen tacene  

P o l y s t y r e n e  600 

P o l y s t y r e n e  900 

Po l y s  t y r e n e  2 100 

D i e t h y l s t i l b e s t r o l  
D i p a l m i t a t e  

78 

360 

304 

312 

128 

178 

306 

178 

774 

330 

228 

278 

600 

900 

2 100 

774 

0 

0.015 

0.035 

0.084 

0.100 

0.120 

0.175 

0.251 

0.300 

0.310 

0.495 

0.900 

0.236 

0.350 

0.640 

0.290 

0 

7 

17 

41 

46 

49 

64 

76 

81 

82  

89 

270 

73 

83 

100 

80 

TABLE 2 

Programmed Flow Rates used  f o r  Mix tu res  S e p a r a t e d  by 
E x t r a c t  i o n  

i 1 Kate oE D e n s i t y  O u t l e t  Flow A P "  o f  S o l u t e s  
Gain Rate ( l a t m )  f o r  U n i t  

I R e s o l u t i o n  i 

0.01 g/rnL-min 69 cc/min 

~ 0.005 g/ml,-min 36 cc /min  

0.15 g/mL 

0.10 g/mL 
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0 15 30 45 60 75 

TLME (minutes) 

FIGURE 3. S e p a r a t i o n  o f  a r o m a t i c  compounds by con t inuous  ex- 
t r a c t i o n  u s i n g  l i n e a r  d e n s i t y  programming a t  a ra te  
of  0 .01 g/mL-min. 

d e s i g n  and sample d e p o s i t i o n  would l e a d  t o  reduced Dp* v a l u e s  and 

i n c r e a s e d  programming r a t e s  such  t h a t  ve ry  r a p i d  s e p a r a t i o n s  would 

r e s u l t  pe rhaps  b e t t e r i n g  chromatography i n  speed f o r  s i m p l e  sepa ra -  

t i o n s  i n v o l v i n g  i n t e r m e d i a t e  o r  h igh  molecu la r  weight  components. 

E x t r a c t i o n  s t u d i e s  were a l s o  done w i t h  s e v e r a l  p o l y s t y r e n e  

polymers whose t h r e s h o l d  d e n s i t y  v a l u e s  are l i s t e d  i n  Tab le  1. 

When t h e  600 and 900 nominal  mo lecu la r  weight  polymers w e r e  mixed 

t o g e t h e r ,  a broad peak s imilar  t o  t h a t  f o r  600 molecu la r  weight  

p o l y s t y r e n e  a l o n e  w a s  o b t a i n e d .  When 600 and 2100 molecu la r  we igh t  

p o l y s t y r e n e s  were mixed, one b road  peak r e s u l t e d  w i t h  no a p p a r e n t  

s e p a r a t i o n .  S i n c e  t h e s e  polymers c o n t a i n  t h e  same ol igomers  b u t  i n  

d i f f e r i n g  c o n c e n t r a t i o n  r a t i o s ,  no o v e r a l l  s e p a r a t i o n  of t h e  samples 

was expec ted .  Furthermore,  t h e  t h r e s h o l d  d e n s i t i e s  of t h e  o l i g o m r s  

are t o o  similar t o  b e  d i f f e r e n t i a t e d  by d e n s i t y  programming a l o n e .  

For ol igomer r e s o l u t i o n ,  a chromatographic  column is  r e q u i r e d .  

I n  t h e  n e x t  phase of  t h e  s t u d y  Carbowax 4 0 0 / P o r a s i l  C was used 

i n  two columns 20 cm and 100 c m  long .  The o u t l e t  f low r a t e s , c h o s e n  

as  t h o s e  l e a d i n g  t o  s a t i s f a c t o r y  r e s o l u t i o n  w i t h  t h e  600 molecu la r  

weight  p o l y s t y r e n e ,  were 34 mL/min f o r  t h e  20 cm column and 69 mL/  
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- 

Benzene A 

I Benzene 

1 2 

TIME (hrs)  

3 

FICURI: 4. S e p a r a t i o n  of 600 MI4 p o l y s t y r e n e  o l i g o m e r s  w i t h  l i n e a r  
d e n s i t y  programming u s i n g  Carbowax 400 columns 20 cm 
l o n g  ( A )  and 100 cm l o n g  (B). 

min f o r  t h e  100 c m  column. F i g u r e s  4 A  and  4 B  show t h e  s e p a r a t i o n  

of 600 m o l e c u l a r  w e i g h t  p o l y s t y r e n e  o l igomers  on t h e  two columns 

u s i n g  a programmed d e n s i t y  ra te  of 0 .01 g/mL-min. C l e a r l y  t h e  

chromdtographic  columns l e a d  t o  t h e  r e s o l u t i o n  o f  o l i g o m e r s  whereas  

e x t r a c t i o n  a l o n e  i s  u n a b l e  t o  p r o v i d e  s e p a r a t i o n .  We n o t e  t h a t  a 

more comple t e  r e s o l u t i o n  of o l i g o m e r s  h a s  been  o b t a i n e d  u s i n g  super-  

c r i t i c a l  n-pentane a t  h i g h  t e m p e r a t u r e s  w i t h  p r e s s u r e  programming 

( 1 2 ) .  
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F i g u r e s  4 A  and 4 B  confirm t h e  p r e d i c t i o n  made i n  t h e  t h e o r y  

s e c t i o n  t h a t  peak s p a c i n g  w i l l  d e c r e a s e  w i t h  e l a p s e d  t i m e  when using 

l i n e a r  d e n s i t y  programming. 

t h e  t h e o r y  is n o t  p o s s i b l e  because  of t h e  unknown d e l a y  ( r e t e n t i o n )  

t i m e  added t o  each o l i g o m e r ' s  t h r e s h o l d  e x t r a c t i o n  t i m e  by t h e  

column. I d e a l l y ,  t h e  theo ry  shou ld  b e  t e s t e d  i n  a pu re  e x t r a c t i o n  

experiment  b u t ,  a s  w e  have no ted ,  ol igomer r e s o l u t i o n  was n o t  pos- 

s i b l e  i n  o u r  sys t em w i t h o u t  a column. 

Unfo r tuna te ly ,  a q u a n t i t a t i v e  test of  

F i n a l l y ,  F i g u r e  5 (compared t o  F i g u r e  3) shows t h a t  t h e  reso-  

l u t i o n  of po lynuc lea r  a r o m a t i c s  can  b e  enhanced by u s i n g  a chromato- 

I I 
1 2 

TIME (hrs) 

FIGURE 5. S e p a r a t i o n  of p o l y n u c l e a r  a romat i c s  on t h e  100 cm 
Carbowax 400 column u s i n g  a d e n s i t y  program rate of  
0.01 g/mL-rnin. 
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286 B O W ,  MYERS, AND G I D D I N G S  

g r a p h i c  column i n  c o n j u n c t i o n  w i t h  t h e  d i f f e r e n t i a l  e x t r a c t i o n  

p r o c e s s .  

co N CL us 1 0 3  

T1ij.s s t u d y  shows t h a t  t h e  s e a r c h  f o r  o p t i m a l  programming i s  a 

r a t h e r  c:ornplicated mat te r  i n  programmed compress ion  dense  gas  chro-  

matography. The programming of  compression i s  u n l i k e  t h e  program- 

mi.ng of t e m p e r a t u r e  i n  programmed t e m p e r a t u r e  chromatography where 

t h e  s i m p l e s t  program ( l i n e a r )  l e a d s  t o  r a t h e r  even peak s p a c i n g  

w i t h i n  a homo1ogous series. I n  t h e  programmed compression case t h e  

most corunon approach-- l i n e a r  p r e s s u r e  programming--fai ls  even t o  

d ~ ~ a l .  wit.h t h e  p r i n c i p a l  pa rame te r  ( d e n s i t y )  gove rn ing  peak migra-  

t i o n .  L i n e a r  d e n s i t y  programming, as  employed h e r e ,  d e a l s  d i . r e c t l y  

w i t h  the: p r i n c j - p a l  p a r a m e t e r  o f  m i g r a t i o n ,  b u t  whe the r  i t  does so  

o p t i m a l l y  i s  open t o  q u e s t i o n .  We have  shown b o t h  e x p e r i m e n t a l l y  

arid t h e o r e t i c a L l y  t h a t  peak s p a c i n g  i s  n o t  un i fo rm w i t h  l i n e a r  

d e n s i t y  programs b u t  p robab ly  can  b e  made t o  approach  un i fo rn i i t y  by 

t h e  s p e c i a l  de r i s i t y  program of  E q u a t i o n  6 .  However, un i fo rm spac ing  

mny n o t  a lways b e  o p t i m a l :  i t  may b e  wor thwhi l e  i n  some cases t o  

siibmerge detai:L f o r  h i g h e r  m o l e c u l a r  we igh t  components i n  o r d e r  t o  

speed  t h e  s e p a r a t i o n  toward comple t ion .  

C l i ?a r ly ,  optimum programming depends upon t h e  needs  and ob jec -  

t i v e s  of e x p e r i m e n t a l  work. We have  p r o v i d e d  here a t h e o r e t i c a l  

approach f o r  c o n v e r t i n g  t h o s e  needs  i n t o  t h e  a p p r o p r i a t e  d e n s i t y  

based program. Fur the rmore ,  w e  have  demons t r a t ed  t h e  e x p e r i m e n t a l  

f e a s i h i l i t y  of  one such  d e n s i t y  program ( l i n e a r )  and have shown ex- 

p e r i m e n t a l l y  how d e n s i t y  based  programming can be  approached.  With 

t h e  p r e s e n t  growth of i n t e r e s t  i n  dense  g a s e s  f o r  v a r i o u s  e x t r a c t i v e  

and ch romatograph ic  s e p a r a t i o n s ,  d e n s i t y  based  programming shou ld  

assume prominence as t h e  b e s t  means t o  e x p l o i t  t h e  v a r i a b l e  s o l v e n t  

power o f  t h e s e  versa t i le  s o l v e n t s .  
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